
Python Workshop - Intermediate



InnoGators
● Design Organization

○ Help members cultivate their technical 

skills through design experience and 

collaboration.

○ Working with professors and companies 

to make their ideas come true!

● Design Projects:

○ 3D Smart Filament Recycler

○ Radiation Plume Tracking Drone

● www.innogators.weebly.com

■ Go to the New Members tab if 

you’re interested!

● Consulting Organization

○ Work with real businesses

○ Case Competitions

● Product Management, coding, 

business principles

● We will be recruiting this coming 

spring

○ Mentors

○ Project Managers

○ Analysts

● Questions? 

○ Email networking.sift@gmail.com

S.I.F.T.

http://www.innogators.weebly.com


Object-Oriented Programming
● Creates a shell which has preset properties determined by the coder 

○ Helps the user easily create a database or list of objects with similar properties

○ Reusing code for repetitive instances

● Good for hierarchy (Inheritance)

○ Example: Create a Hat object which is an instance of the Clothing object and inherits the properties 

of said clothing object



Classes
● Classes are used to combine functions and variables into a single structure.

○ A template for objects

● You can have multiple objects that are of the same class but they can have their own unique 

values for the class’ variables.

○ A square, triangle, and octagon (objects) are all shapes (class) and have a number of 

sides  (variable), but have different numbers of sides.

○ To access an object’s variables, you type “Object_name.variable”

● Syntax:       Example:

class ClassName:

<statement-1>

.

.

.

<statement-N>



Functions
● A function is a block of code that executes a sequence of statements to perform a task.

○ Functions can have a parameter or parameters to pass in values to help perform its task

○ Functions can also have a return value to generate a value for use

● Syntax:

● To call a function, you just type the function’s name and pass in the arguments it 

needs, if any

● Example (name generator):

def function_name(argument_one, argument_two, …, argument_n):

body of function outlining whatever it does

return output (if function returns anything)

Output:

Code:

Function call



Lists
● Allow for multiple items in one variable

● Ordered, mutable, and allow duplicate values

● Support any data type even mix of different data type.

● Can access values in list through indexing, starting from 0

● len() function call will give the length of a list 

● .append() and .remove() for adding and removing items

● https://docs.python.org/3/tutorial/datastructures.html

● Examples

○ arr_num = [1, 2, 3, 4]

○ arr_string = [“hello”, “world”]

○ arr_num[0] -> 1

○ Arr_string[1] -> “world”

○ len(arr_num) -> 4

○ arr_num + arr_string = [1, 2, 3, 4, “hello”, “world”]

○ arr_num[1:3] = [2, 3]

○ arr_num.append(5) -> [1, 2, 3, 4, 5]

○ arr_string.remove(“hello”) -> [“world”]



Tuples
● Very similar to lists, however they are immutable (cannot change, add, or remove 

items)

● All other functionality is the same for tuples. 

● They are initialized with parentheses rather than square brackets.

● https://docs.python.org/3/tutorial/datastructures.html#tuples-and-sequences

● Examples

○ single_tuple = (1,)

○ tuple_num = (1, 2, 3, 4)

○ tuple_string = (“hello”, “world”)

○ tuple_num[0] = 1  # will produce an error

○ len(tupel_num) = 4

○ tuple_num + tuple_string = (1, 2, 3, 4, “hello”, “world”)

○ arr_num[1:3] = (2, 3)

○ arr_num.append(5) # will produce an error

○ list(tuple_num) -> [1, 2, 3, 4] # list() commands converts tuple to a list

○ tuple([1, 2]) -> (1, 2) # vice versa



Dictionaries
● A collection that is unordered, changeable, and indexed.

● Consists of key, value pairs and mappings from one data type to another 

● https://docs.python.org/3/tutorial/datastructures.html?highlight=dictionary#dictio

naries

● Examples

○ car = { “brand” : “Ford”, “model” : “Mustang”, “year” : 1987}

○ car[“year”] -> 1987

○ len(car) -> 3

○ car[“color”] = “red” -> { “brand” : “Ford”, “model” : “Mustang”, “year” : 1987, “color” : “red”}

○ car.pop(“brand”) -> { “model” : “Mustang”, “year” : 1987}

○ car.keys() -> [“brand”, “model”, “year”]

○ car.values() -> [“Ford”, “Mustang”, 1987]

○ “brand” in car -> True



Sets
● Unordered collection of items

○ Unique items (no 

duplicates)

○ Each set element is 

immutable (cannot be 

changed)

○ Set as whole can be 

added to or removed 

from

● Perform mathematical set 

operations

● https://docs.python.org/3/tutori

al/datastructures.html?highligh

t=dictionary#sets



Importing Libraries
● Accesses additional functions

○ Ex: math, random, etc

○ Python Standard Library, Many 3rd Party Libraries for AI, Web Dev, Game Dev, Data Science

○ https://docs.python.org/3/library/

○ https://wiki.python.org/moin/UsefulModules

● Must import every time you start a new project

https://docs.python.org/3/library/
https://wiki.python.org/moin/UsefulModules


Break Out Room Practice
Download the template uploaded in the chat!

In this project you will create a virtual phone book which will keep track of new 

entries and be able to print out the phone book for the user

● https://medium.com/@mardiyyah/building-a-simple-phonebook-learnpythonthrou

ghprojects-series-10-af56d527f463

https://medium.com/@mardiyyah/building-a-simple-phonebook-learnpythonthroughprojects-series-10-af56d527f463
https://medium.com/@mardiyyah/building-a-simple-phonebook-learnpythonthroughprojects-series-10-af56d527f463

